EconPapers    
Economics at your fingertips  
 

Thermodynamic analysis and design optimisation of a cross flow air to air membrane enthalpy exchanger

Ahmed K. Albdoor, Zhenjun Ma, Paul Cooper, Haoshan Ren and Fatimah Al-Ghazzawi

Energy, 2020, vol. 202, issue C

Abstract: This paper presents a thermodynamic analysis and design optimisation of a cross flow air to air membrane enthalpy exchanger (MEE). The entropy generation rate for simultaneous heat and moisture transfer was first derived based on the second law of thermodynamics and the NTU-effectiveness method. Two potential objective functions based on the dimensionless entropy generation rates were used in this study. A parametric analysis was carried out to explore the effects of the effectiveness and operating conditions on the dimensionless entropy generation rates of the MEE and identify the appropriate objective function to be used in the optimisation. Global sensitivity analysis and a genetic algorithm were used to determine the key design parameters and obtain their optimal values, respectively. An illustrative example was lastly used to demonstrate the benefit of the optimisation. It was found that the operating conditions showed significant impacts on the entropy generation rates inside MEEs. Using the optimal values identified can reduce the entropy generation by 19.8% and 29.7% for the cooling and heating modes respectively, as compared to a baseline design. The findings obtained can be used to generate a deep understanding of the relationship between entropy generation rate and the operating conditions/design parameters of MEEs.

Keywords: Membrane enthalpy exchanger; Thermodynamic analysis; Design optimisation; Entropy generation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220307982
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:202:y:2020:i:c:s0360544220307982

DOI: 10.1016/j.energy.2020.117691

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220307982