EconPapers    
Economics at your fingertips  
 

Thermal performance of a closed collector–storage solar air heating system with latent thermal storage: An experimental study

C.Q. Chen, Y.H. Diao, Y.H. Zhao, Z.Y. Wang, L. Liang, T.Y. Wang, T.T. Zhu and C. Ma

Energy, 2020, vol. 202, issue C

Abstract: The collector–storage solar air heating system has huge application potential in many fields. Traditional collector–storage solar air heating systems have been applied in related fields, but improving the temperature of phase change materials (PCMs) quickly is difficult because these systems are open. On the basis of a literature review, this study proposes a closed collector–storage solar air heating system (CCSSAHS) that connects a solar air collector and a latent thermal storage unit in series to form a closed loop, thus avoiding the wastage of high-quality energy. The thermal storage performance of CCSSAHS under different meteorological parameters and volume flow rates was studied experimentally. The heat losses of the various components of this system were analyzed comprehensively. Results showed that CCSSAHS can quickly increase the temperature of PCM. On February 16, 2018 and July 26, 2018 the temperature of PCM increased to 50 °C after 126 and 48 min, respectively. The highest temperature of PCM that CCSSAHS could achieve was 68.52 °C within 132 min. The heat loss proportion of the solar air collector was between 55.87% and 71.05%. These findings are expected to provide a basis for the design and optimization of similar systems.

Keywords: Solar air collector; Latent thermal storage unit; Closed-system; Heat loss (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220308719
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308719

DOI: 10.1016/j.energy.2020.117764

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308719