Genetic-programming-based multi-objective optimization of strategies for home energy-management systems
Jernej Zupančič,
Bogdan Filipič and
Matjaž Gams
Energy, 2020, vol. 203, issue C
Abstract:
Home energy-management systems can optimize performance either by computing the next step dynamically – online, or rely on a precomputed strategy used to introduce the next decision – offline. Further, such systems can optimize based on only one or several objectives. In this paper, the multi-objective optimization of offline strategies for home energy-management systems is addressed. Two approaches are compared: the common timetable-based versus our approach based on decision trees. The timetable-based strategy is optimized using a multi-objective genetic algorithm, while the tree-based strategy is optimized using multi-objective genetic programming. As a result, a set of rules that comprise the trees for efficient management of an energy system is generated automatically. First, the approaches are addressed theoretically, with the finding that the tree-based approach is more powerful than the timetable-based approach. Second, the performance of the tree-based approach is compared with the performance of the timetable-based approach and manually defined strategies in an experiment involving real-world data. A performance increase of up to 17% in terms of the cost objective was confirmed for the tree-based approach. This is achieved without changing the user habits, i.e., there is no need of having to adapt the appliance usage to the energy-management system.
Keywords: Home energy-management system (HEMS); Genetic programming; Multi-objective optimization; Tree-based strategy; Timetable-based strategy; Multi-objective reinforcement learning (MORL) (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220308768
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:203:y:2020:i:c:s0360544220308768
DOI: 10.1016/j.energy.2020.117769
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().