Electricity plan recommender system with electrical instruction-based recovery
Junjie Zheng,
Chun Sing Lai,
Haoliang Yuan,
Zhao Yang Dong,
Ke Meng and
Loi Lei Lai
Energy, 2020, vol. 203, issue C
Abstract:
Several electricity tariffs have emerged for Demand Side Management (DSM) and residential customers are faced with challenges to choose the plan satisfying their personal needs. Electricity Plan Recommender System (EPRS) can alleviate the problem. This paper proposes a novel EPRS model named EPRS with Electrical Instruction-based Recovery (EPRS-EI), which is a dual-stage model consisting of feature formulation stage and recommender stage. In the feature formulation stage, matrix recovery with electrical instructions is applied to recover appliance usages, and the recovered data is set as features representing customers’ living patterns. In the recommender stage, Collaborative Filtering Recommender System (CFRS) based on K-Nearest Neighbors (KNN) and adjusted similarity is applied to recommend personal electricity plans to customers based on the above features. Different from other EPRS models, EPRS-EI is the first model utilizing matrix recovery methods and similarity computation with electrical instructions. With these electrical instructions, the proposed model is able to utilize more explicit features and recommend more personalized plans. We then apply EPRS-EI to predict the testing customers’ preference for electricity plans. Simulation results on recovering electricity data and their applications in EPRS confirm the effectiveness of the proposed methods in comparison to state-of-the-art methods, with 93.56%–94.85% customers correctly recommended.
Keywords: Matrix recovery; Low-rank recovery; Electricity plan recommender system (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220308823
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:203:y:2020:i:c:s0360544220308823
DOI: 10.1016/j.energy.2020.117775
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().