EconPapers    
Economics at your fingertips  
 

Renewables in the European power system and the impact on system rotational inertia

L. Mehigan, Dlzar Al Kez, Seán Collins, Aoife Foley, Ó’Gallachóir, Brian and Paul Deane

Energy, 2020, vol. 203, issue C

Abstract: Generation from synchronous machines in European power systems is decreasing as variable renewable energy penetration increases. Appropriate levels of system rotational inertia to ensure system stability, previously inherent in synchronous areas across Europe, can no longer be assumed. This work investigated the impact different levels of minimum inertia constraint have in Europe and in each synchronous area. Two scenarios with divergent decarbonisation ambitions were simulated for the year 2030 using a unit commitment and economic dispatch model. The key findings show that an increasing inertia constraint elevates total generation costs, variable renewable energy curtailment and carbon dioxide emissions across Europe for an ambitious decarbonisation scenario. When inertia constraints were applied to the contrasting scenario with a low decarbonisation ambition, decreases in carbon dioxide emissions of up to 49% were observed in some synchronous areas where the constraint was frequently active. The work also scrutinised the spread of inertia in the large synchronous area of Continental Europe. It emerged that some countries are likely to experience periods of low inertia even if an inertia constraint is applied at synchronous area level.

Keywords: Rotational inertia; Unit commitment and economic dispatch; Renewable energy; Frequency stability; Ancillary services; Power system modelling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220308835
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:203:y:2020:i:c:s0360544220308835

DOI: 10.1016/j.energy.2020.117776

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220308835