State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression
Xiaoyu Li,
Changgui Yuan and
Zhenpo Wang
Energy, 2020, vol. 203, issue C
Abstract:
Precise battery capacity estimation and monitoring are of extreme importance for the future intelligent battery management system. The primary technical issues result from the absence of enough cognition for battery aging mechanism and effective modeling in complex application scenarios. Synthesis theoretical analysis and engineering application, incremental capacity analysis approach may be accessible in actual operation. This paper proposes a data-driven prediction technique, support vector regression for establishing a battery degradation model, which estimates battery capacity by partial incremental capacity curves. Firstly, the advanced filter algorithms are utilized to smooth incremental capacity curves and then a peak fitting technique is applied to decompose the smooth curves. The battery health features are extracted from decomposed incremental capacity curves as training datasets. Using different sizes of training datasets, three battery degradation models are established based on the support vectors regression algorithm. The performances of the proposed models are comparison analyses for each testing dataset. The aging datasets are collected from other three batteries applied to extensively verify the proposed method. Quantitatively, mean absolute errors (MAEs) and root mean square errors (RMSEs) of the three models are both limited to 2%. Otherwise, the accuracy of Model3 is improved about 30% in MAEs and RMSEs.
Keywords: Lithium-ion batteries; State of health; Peak fitting; Partial incremental capacity; Support vector machine (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (58)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220309592
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309592
DOI: 10.1016/j.energy.2020.117852
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().