Investigation of an innovative PV/T-ORC system using amorphous silicon cells and evacuated flat plate solar collectors
Cagri Kutlu,
Jing Li,
Yuehong Su,
Yubo Wang,
Gang Pei and
Saffa Riffat
Energy, 2020, vol. 203, issue C
Abstract:
Solar-driven organic Rankine cycle (s-ORC) power generation is a promising technology with thermal storage for flexible operation to meet domestic variable electricity demand. A satisfactory efficiency of this technology can be obtained only at medium-to-high temperature, for which conventional flat plate and evacuated tube solar collectors are not suitable while solar concentrators cannot efficiently utilize diffuse solar radiation. Evacuated flat plate (EFP) collectors have recently been developed for efficient solar heat collection in the temperature range from 100 to 200°C, suitable for the ORC system. At present, the cost of EFP collectors is relatively high and will lead to a long payback period of the s-ORC system. To increase the annual power yield and reduce the payback time, inexpensive amorphous silicon (a-Si) solar cells are proposed to be integrated into the EFP collectors. It is the first time to put forward such photovoltaics/thermal (PV/T) design combining a-Si cells and EFP collectors. Compared with polycrystalline silicon cells (poly-Si), a-Si cells may have a higher electrical efficiency at a higher operating temperature due to the thermal annealing effect and are expected to have a long lifetime without encapsulation in the vacuum environment provided by the EFP collectors. In this study, the a-Si PV/T-ORC system using EFP collectors is investigated. Transient performance analysis of a-Si PV/T-ORC is given for the weather data of two selected days. A comparison is also made with a stand-alone poly-Si PV system, poly-Si PV/T-ORC system and s-ORC system with EFP collectors alone, respectively. The results indicate that for a typical day in July, the a-Si PV/T-ORC system has the highest daily power output of 0.822 kWh/m2, 102.3% more than the s-ORC system, 23.8% more than the stand-alone poly-Si PV system and 12% more than the poly-Si PV/T-ORC system, respectively.
Keywords: Solar organic rankine cycle; Amorphous silicon cell; Photovoltaic/thermal; Evacuated flat plate collector (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220309804
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309804
DOI: 10.1016/j.energy.2020.117873
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().