Combining wind, solar, and in-stream tidal electricity generation with energy storage using a load-perturbation control strategy
Nathaniel Pearre and
Lukas Swan
Energy, 2020, vol. 203, issue C
Abstract:
Combining intermittent renewable generation with energy storage in the electricity grid has become a preferred route to maintaining stability and reliability while decarbonizing. The effects of combining three uncorrelated intermittent resources with energy storage are not well understood. This study reports on a data-driven model and control strategy that optimizes relative installed capacities of wind, solar, and in-stream tidal generation with energy storage for smoothing and shaping to follow electrical load perturbations. The model is applied to a case study in Nova Scotia, Canada which has strong wind and tidal resources, and moderate solar resources. For load-perturbation control on hour shaping timescales the total system capital costs are approximately 20% greater than the costs of the renewable generation without energy storage and output shaping. Shaping timescales of days and weeks favour greater installed wind, solar, and tidal generating capacity and the use of curtailment for economic optimization, with less installed energy storage capacity. Hour-timescale shaping uses the energy storage to mitigate power variability in intermittent generation, which benefits short-term electricity generation dispatch and reliability. Day-timescales shaping uses the energy storage to supply the load’s variable energy needs using for day-ahead or future electricity generation scheduling.
Keywords: Renewable; Wind; Solar; Tidal; Energy storage; Grid; Electricity (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220310057
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:203:y:2020:i:c:s0360544220310057
DOI: 10.1016/j.energy.2020.117898
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().