EconPapers    
Economics at your fingertips  
 

Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses

Giovanni Barone, Annamaria Buonomano, Cesare Forzano and Adolfo Palombo

Energy, 2020, vol. 204, issue C

Abstract: Nowadays, due also to high hygrothermal comfort requirements, the energy consumption for heating/cooling of modern trains can reach 30% of the related overall electricity demand. Energy-saving of train Heating, Ventilation and Air Conditioning systems can be suitably assessed through dynamic simulation approaches. Specifically, the weather solicitation has to be dynamically accounted for by considering the actual moving train location and orientation. Through such methodology different innovative actions for energy efficiency, environmental impact reduction and comfort enhancement can be analysed by also assessing their economic feasibility. In this paper, a novel simulation tool for the complete performance analysis of trains was developed in TRNSYS environment.

Keywords: Dynamic simulation; Train; Heating; Ventilation; And air conditioning systems; Energy efficiency; Thermal comfort (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220309403
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:204:y:2020:i:c:s0360544220309403

DOI: 10.1016/j.energy.2020.117833

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220309403