Optimal planning and operation of multi-carrier networked microgrids considering multi-energy hubs in distribution networks
Ali Ghanbari,
Hamid Karimi and
Shahram Jadid
Energy, 2020, vol. 204, issue C
Abstract:
In this paper, we propose a new scheme for designing multi-carrier networked microgrids. Various multi-energy carriers are utilized to form energy hubs which exchange energy with each other and the main electricity and gas networks. The proposed model considers renewable generation, diesel generators, fuel cells, energy storages, combined heat and powers, boilers, combined cooling heat and powers, and power to gas converters. The seasonal load patterns are considered to design the optimal capacity of combined cooling, heating, and powers. The main objective of the proposed model is to operate the integrated hubs with minimum cost, meet the consumer’s required energies, reduce the emissions, and create a bi-directional interaction between electricity, and gas networks using power to gas converters. While all electrical, mechanical, and technical constraints are satisfied. To achieve these improvements, industrial and residential hubs interact with other multi-carrier microgrids to determine the optimal operation of hubs. The proposed model is tested on a standard case study and results show when hubs integrate about the total daily cost of each microgrid has been improved about 200 $. Besides, the thermal energy not supply in microgrid 4 has been improved from 4.61 MWh to 0.45 MWh.
Keywords: Integrated energy hubs; Multi-carrier microgrids; Power to gas; Operation and planning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220310434
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310434
DOI: 10.1016/j.energy.2020.117936
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().