EconPapers    
Economics at your fingertips  
 

A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization

Xing Shu, Guang Li, Jiangwei Shen, Zhenzhen Lei, Zheng Chen and Yonggang Liu

Energy, 2020, vol. 204, issue C

Abstract: State of health is one of the most critical parameters to characterize inner status of lithium-ion batteries in electric vehicles. In this study, a uniform estimation framework is proposed to simultaneously achieve the estimation of state of health and optimize the healthy features therein, which are excavated based on the charging voltage curves within a fixed range. The fixed size least squares-support vector machine is employed to estimate the state of health with less computation intensity, and the genetic algorithm is applied to search the optimal charging voltage range and parameters of fixed size least squares-support vector machine. By this manner, the measured raw data during the charging process can be directly fed into the estimation model without any pretreatment. The estimation performance of proposed algorithm is validated in terms of different voltage ranges and sampling time, and also compared with other three traditional machine learning algorithms. The experimental results highlight that the presented estimation framework cannot only restrict the prediction error of state of health within 2%, but also feature high robustness and universality.

Keywords: State of health; Lithium-ion batteries; Fixed size least squares-support vector machine; Genetic algorithm; Feature extraction (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220310641
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310641

DOI: 10.1016/j.energy.2020.117957

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310641