EconPapers    
Economics at your fingertips  
 

Research on energy-saving characteristics of battery-powered electric-hydrostatic hydraulic hybrid rail vehicles

Huanlong Liu, Guanpeng Chen, Chixin Xie, Dafa Li, Jiawei Wang and Shun Li

Energy, 2020, vol. 205, issue C

Abstract: With the advantages of no emission and low noise, battery rail vehicles (BRVs) are widely used in the construction of subway, high-speed railway and so on. However, the problems of low energy efficiency and peak power shock of traction motor have severely restricted the application and promotion of BRVs. To address these problems, an electric-hydrostatic hydraulic hybrid powertrain (EH3) is designed in this paper. Friction braking (FB) is replaced by hydraulic regenerative braking (HRB) and the mode of recovered hydraulic energy coupled at the inlet of pump (ECIP) to assist acceleration is proposed. The energy conservation characteristics of recovery and coupling of hydraulic energy in EH3 powertrain are verified by simulation and laboratory test bench. The energy recovery efficiency of HRB is up to 50% and the new coupling modes can greatly reduce the consumption of electric power. The control strategy is designed to coordinate different working modes which are established based on the high-pressure accumulator (HPA) and the driving state parameters of BRVs. The simulation result shows that the energy consumption of the battery can be reduced by 17.32%. The EH3 powertrain has broad application prospects in realizing energy conservation, reducing peak motor power shock and improving the braking performance of BRVs.

Keywords: Electric-hydrostatic hydraulic hybrid powertrain; Hydraulic energy; Flow coupling; Hydraulic regenerative braking; Energy efficiency (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220311865
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311865

DOI: 10.1016/j.energy.2020.118079

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311865