EconPapers    
Economics at your fingertips  
 

A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy

Xilin Luo, Huiming Duan and Leiyuhang He

Energy, 2020, vol. 205, issue C

Abstract: and accurate prediction of clean energy can supply an important reference for governments to formulate social and economic development policies. This paper begins with the logistic equation which is the whitening equation of the Verhulst model, introduces the Riccati equation with constant coefficients to optimize the whitening equation, and establishes a grey prediction model (CCRGM(1,1)) based on the Riccati equation. This model organically combines the characteristics of the grey model, and flexibly improves the modelling precision. Furthermore, the nonlinear term is optimized by the simulated annealing algorithm. To illustrate the validation of the new model, two kinds of clean energy consumption in the actual area are selected as the research objects. Compared with six other grey prediction models, CCRGM(1,1) model has the highest accuracy in simulation and prediction. Finally, this model is used to predict the nuclear and hydroelectricity energy consumption in North America from 2019 to 2028. The results predict that nuclear energy consumption will keep rising in the next decade, while hydroelectricity energy consumption will rise to a peak and subsequently fall back, which offers important information for the governments of North America to formulate energy measures.

Keywords: Grey prediction model; Clean energy; Short-term and metaphase prediction; Simulated annealing optimization; CCRGM(1,1) model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220311920
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311920

DOI: 10.1016/j.energy.2020.118085

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311920