Feasibility research on a hybrid solar tower system using steam and molten salt as heat transfer fluid
Honglun Yang,
Jing Li,
Yihang Huang,
Trevor Hocksun Kwan,
Jingyu Cao and
Gang Pei
Energy, 2020, vol. 205, issue C
Abstract:
As a high solar concentration technology, the solar tower power (STP) system is an appealing approach to generate high-grade thermal energy and achieve high thermal-to-electric efficiency. In this study, the authors notice the solar flux distribution characteristic of the central receiver and combine the advantages of lower average operation temperature of the direct steam generation (DSG) loop and higher efficiency of the molten salt (MS) loop. A hybrid solar tower system that involves steam and MS as the heat transfer fluids is proposed for improving the thermal efficiency of STP systems. The receiver of the hybrid system is divided into two sections, which are respectively designed for the MS and DSG loop, namely MS-DSG system. By comparing the DSG-MS system to the traditional system, the DSG-MS system demonstrates significant heat loss reduction of 31.8 GWh in Lhasa and 34.5 GWh in Tonopah, and the corresponding electricity outputs are improved by 6.22% and 5.82% with a MS receiver panel number of 8. The steam outlet quality of the DSG loop is insensitive to the overall performance of the systems. It is indicated that the steam quality can be adjusted for ensuring two-phase heat transfer stability and safe operation of the receiver. Moreover, the hybrid system also gives a flexible adjustment of thermal energy storage capacity by optimizing receiver panel number for different heat transfer fluid loop.
Keywords: Solar energy; Tower receiver; Molten salt; Direct steam generation; Concentrated solar power (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220312019
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:205:y:2020:i:c:s0360544220312019
DOI: 10.1016/j.energy.2020.118094
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().