The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell
Pengcheng Dong,
Gongnan Xie and
Meng Ni
Energy, 2020, vol. 206, issue C
Abstract:
In order to improve the mass transfer and the energy performance of a Proton Exchange Membrane Fuel Cell (PEMFC), five different kind of block shapes in the flow channel are proposed and evaluated numerically. It is found that the use of blocks in the gas channel enhances the mass transfer due to the generation of a nozzle-type effect in the channel. Results shows that the performances of PEMFCs with the five blocked channels [Cases B–F] can be improved comparing with that of the conventional flow channel without block [Case A], and Case D performs the best. The electrochemical conversion efficiency and effective power are improved by 15.58% and 15.77%, respectively. Further, by observing the block heights (0.4, 0.5 and 0.6) and spatial intervals (2.5, 5.0 and 8.0) of the above optimal shape [Case D] on the energy performances, these improvements can be raised to 17.09% and 16.95%, respectively.
Keywords: PEMFC; Blocked flow channel; Mass transfer; Pressure drop; Effective power; Cell performance (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220310847
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:206:y:2020:i:c:s0360544220310847
DOI: 10.1016/j.energy.2020.117977
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().