EconPapers    
Economics at your fingertips  
 

Data-driven predictive models for residential building energy use based on the segregation of heating and cooling days

Ehsan Kamel, Shaya Sheikh and Xueqing Huang

Energy, 2020, vol. 206, issue C

Abstract: Data-driven models can estimate the buildings’ energy consumption using machine learning algorithms. This approach works based on the correlation between energy consumption and various inputs such as weather data, occupancy schedules, heating, air conditioning, and physical properties of buildings. Seasonal changes affect buildings’ energy use. Hence, the required data for data-driven models (DDMs) during the heating and cooling days could be different. Selecting the most impactful inputs can help to choose the type and quantity of sensors for deployment that improve the model’s accuracy and minimize the costs. This paper performs feature selection for heating, cooling, hot water, and ventilation loads in residential buildings under the mixed-humid climate zone. Filter method, wrapper backward elimination, wrapper recursive feature elimination, Lasso regression, linear regression, and Extreme Gradient Boosting (XGBoost) regression are adopted for heating and cooling days, separately. We use twenty-five outputs from a computer model, and the results show that the key features for a DDM are different for heating and cooling days, and XGBoost provides the most accurate forecast. The findings of this paper are useful for selecting proper models, sensors, and inputs for model-predictive control systems during the heating and cooling seasons.

Keywords: Data-driven predictive model; Heating and cooling days; Energy consumption; Residential buildings; Feature selection (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422031152X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:206:y:2020:i:c:s036054422031152x

DOI: 10.1016/j.energy.2020.118045

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:206:y:2020:i:c:s036054422031152x