Analytical solutions of heat and mass transfer process in combined gas-water heat exchanger applied for waste heat recovery
Yiyu Men,
Xiaohua Liu and
Tao Zhang
Energy, 2020, vol. 206, issue C
Abstract:
The main task of a combined gas-water heat exchanger (CGHE) in a waste heat recovery system is to transfer heat from flue gas to boiler backwater. A spray tower and an indirect contact heat exchanger are key components of the CGHE. Analytical solutions of the heat and mass transfer process for the overall system are presented in this paper. Analytical solutions of the air and water parameters agree well with the results gained from both experiment results and numerical solutions. The result developed from the analytical method has been used for optimizing the thermal performance of the CGHE. It’s indicated the heat recovery efficiency is determined by CGHE structure characteristics and spray water flow rate, while inlet states of the flue gas and the backwater have limited effect. In a specified system, there is an optimal flow rate of the spray water corresponding to the minimum thermal resistance of the CGHE. This is mainly because the increase in the spray water flow rate is beneficial to the contact area in the spray tower, but adverse to the matching performance between the fluids. When the CGHE is optimized, the maximum heat recovery efficiency and the maximum heat transfer rate are obtained.
Keywords: Gas-water heat exchange; Heat and mass transfer; Analytical solution; Heat recovery (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220312020
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312020
DOI: 10.1016/j.energy.2020.118095
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().