Particle migration and blockage in geothermal reservoirs during water reinjection: Laboratory experiment and reaction kinetic model
Liang Zhang,
Jiahao Chao,
Songhe Geng,
Zhen Zhao,
Huijuan Chen,
Yinfei Luo and
Guangxiong Qin
Energy, 2020, vol. 206, issue C
Abstract:
During water reinjection in geothermal reservoirs, the risk of particle migration and blockage is often unavoidable, especially in the reservoirs with high mud content and poor consolidation. In this paper, a series of core flooding experiments using a sand-packed tube were conducted to evaluate the effects of water flow rate, sand grain composition, temperature, and confining pressure on the particle migration and blockage in reservoir. A novel reaction kinetic model was established to describe the process of particle migration and blockage in porous media. The results show that the movable particles in reservoir can be divided into fine particles (size<1/5 pore throat) and coarse particles (size between 1/5–1/2 pore throat), which can start to migrate successively as water flow rate increases. The fine particles can be produced out, while the coarse particles are likely to block the pore throat, making the permeability fluctuated and eventually decreased. The increase of coarse particle content, temperature and confining pressure can enhance the particle blockage risk in reservoir due to the great decline of the absolute permeability. The established reaction kinetic model of particle migration and blockage can be used to study the rock-fluid interactions during the geothermal water production and reinjection.
Keywords: Geothermal water reinjection; Sand and clay particle migration; Blockage risk; Reaction kinetic model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220313414
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:206:y:2020:i:c:s0360544220313414
DOI: 10.1016/j.energy.2020.118234
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().