An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning
Zhe Yan,
Yongming Zhang,
Runqi Liang and
Wenrui Jin
Energy, 2020, vol. 207, issue C
Abstract:
The power generation of renewable energy represented by wind and solar energy on energy supply-side has uncertainty. Meanwhile, the fluctuation problems in power system is also caused by increasing number of air-conditioning loads on energy demanded-side. For addressing the fluctuation, energy storage technology is considered as a crucial solution. Energy storage technology can also improve the flexibility of the power system and reduce the peak-valley difference. However, a large scale of electrical energy storage has less economic. Hybrid energy (including electrical and thermal energy) storage can be seen as a practicable solution instead of electrical energy storage. An allocative method of hybrid energy storage capacity is proposed in this paper. By use of this method, the mathematical model is explored between hybrid energy storage capacity and peak-valley difference. It is convenient to determine the capacity of hybrid energy storage depending on peak valley difference required. Moreover, seasonal difference of electrical load can determine the capacity of electrical and thermal energy storage, respectively. In addition, the economy model of energy storage capacity helps to find out the optimal capacity. This proposed method can be used as an analysis tool of district energy planning and energy system renewal.
Keywords: Hybrid energy storage; Electrical energy storage; Thermal energy storage; Load shifting; Seasonal difference; District energy planning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220312469
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:207:y:2020:i:c:s0360544220312469
DOI: 10.1016/j.energy.2020.118139
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().