Sizing and implementing off-grid stand-alone photovoltaic/battery systems based on multi-objective optimization and techno-economic (MADE) analysis
Hussein Mohammed Ridha,
Chandima Gomes,
Hashim Hazim and
Masoud Ahmadipour
Energy, 2020, vol. 207, issue C
Abstract:
Sun energy is widely utilized to power stand-alone photovoltaic systems (SAPV). However, the lack of long term hourly meteorological data and inaccurate methods result in obstacles in designing the SAPV system. Therefore, an optimal sizing methodology is necessary to guarantee satisfactory performance. In this study, a new mutation adaptive differential evolution (MADE) based on a multi-objective optimization algorithm is presented to optimize the configuration of the off-grid SAPV system. Three conflict objectives are normalized, weighted, and then aggregated by mono-objective function to optimally size the off-grid stand-alone PV system. The performance of the proposed SAPV system is analyzed based on three types of batteries which are lead-acid, AGM, and lithium-ion. The results show that the optimal configuration based on lead-acid has less fitness function (f), life cycle cost (LCC), levelized cost of energy (LCE), with a high level of loss of load probability (LLP), and their values are 0.0268, 54,896 USD, 1.58USD, and 0.19%, respectively. Moreover, the optimal numbers of the PV modules (in series and parallel) and lead-acid battery are 9, 28, and 42, respectively. Therefore, the SAPV system based on lead-acid battery can be very suitable for real-world applications.
Keywords: Off-grid SAPV system; Multi-objective optimization; Differential evolution; Storage battery; LLP; LCC (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220312706
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:207:y:2020:i:c:s0360544220312706
DOI: 10.1016/j.energy.2020.118163
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().