EconPapers    
Economics at your fingertips  
 

Pyrolysis kinetics of short rotation coppice poplar biomass

Filipe Rego, Ana P. Soares Dias, Miguel Casquilho, Fátima C. Rosa and Abel Rodrigues

Energy, 2020, vol. 207, issue C

Abstract: Woody biomass can be converted into green fuels by advanced conversion technologies such as gasification and pyrolysis. Due to the complexity of woody biomass, the thermochemical decomposition mechanisms are complex and the knowledge of pyrolysis kinetics is mandatory for optimization of the process and reactor design of commercial scale biorefineries. Pyrolysis kinetics of short rotation coppice (SRC) poplar biomass (nine different clones) was studied using non-isothermal thermogravimetry. By using differential thermogravimetry data, obtained for heating rates of 10–50 K/min, the Kissinger model-free methodology showed activation energies in the range 108–320 kJ/mol, similar to those reported in the literature for cellulose pyrolysis. Isoconversional approaches of Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) obtained similar values of activation energy (81–301 kJ/mol and 90–306 kJ/mol, respectively. The kinetics parameters obtained by the FWO and KAS methods were higher than data reported in the literature for other biomasses, and a correlation between activation energy and the lignin content of the biomass samples was found. The pyrolysis activation energy seems to have no significant effect on the pyrolysis product yields, probably because, under the tested conditions (fixed bed reactor, 773 K), pyrolysis was controlled by mass and/or heat transfer limitations instead of kinetics control.

Keywords: SRC poplar; Lignocellulosic biomass; Thermogravimetry; Pyrolysis kinetics; Non-isothermal methods; Fixed bed pyrolysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220312986
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:207:y:2020:i:c:s0360544220312986

DOI: 10.1016/j.energy.2020.118191

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220312986