EconPapers    
Economics at your fingertips  
 

Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization

Yonggang Liu, Junjun Liu, Yuanjian Zhang, Yitao Wu, Zheng Chen and Ming Ye

Energy, 2020, vol. 207, issue C

Abstract: In this article, a multi-objective optimization-oriented energy management strategy is investigated for fuel cell hybrid vehicles on the basis of rule learning. The degradation of fuel cells and lithium-ion batteries are considered as the objective function and translated into the equivalent hydrogen consumption. The optimal fuel cell power sequence and state of charge trajectory, considered as the energy management input, are solved offline via the Pontryagin’s minimum principle. The K-means algorithm is employed to hierarchically cluster the optimal data set for preparation of rules extraction, and then the rules are excavated by the improved repeated incremental pruning to production error reduction algorithm and fitted by the quasi-Newton method. The simulation results highlight that the proposed rule learning-based energy management strategy can effectively save hydrogen consumption and prolong fuel cell life with real-time application potential.

Keywords: Fuel cell hybrid vehicle; Multi-objective optimization; Energy management; Rule learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220313190
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313190

DOI: 10.1016/j.energy.2020.118212

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313190