EconPapers    
Economics at your fingertips  
 

Design screening and analysis of gas-fired ammonia-based chemisorption heat pumps for space heating in cold climate

Zhiyao Yang, Ming Qu and Kyle R. Gluesenkamp

Energy, 2020, vol. 207, issue C

Abstract: Thermally-driven ammonia-based chemisorption heat pumps (CSHP) have the potential to provide high-efficiency space heating in cold climates. Using the reversible chemical bond between sorbent salt and ammonia, CSHP thermochemically pumps heat from the cold ambient to the end-uses of space heating at 50 °C. The heating coefficient of performance (COP) of a CSHP is largely dependent on the selection of the sorbent salts, cycle configuration, and the system operation. This study uses a thermodynamic model to investigate the performance of six CSHP system configurations, including four single-effect and two double-effect cycles. The feasibility and performance of 121 available NH3/salt reactions are studied for each configuration. The thermal COP of the cycles and the primary energy COP of the gas-fired CSHP systems are evaluated assuming 50 °C supply temperature for building space heating and the optimal system designs are identified. The highest thermal COP for single-effect and double-effect cycles under −25 °C ambient temperatures are predicted to be 1.22 and 1.57, respectively. The corresponding primary energy COPs are above 1.0 and 1.15, which are 30% higher than condensing furnaces and is sustained into the same cold temperatures.

Keywords: chemisorption; Heat pump; Cold climate; Ammoniate salt; Thermodynamic analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220313207
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313207

DOI: 10.1016/j.energy.2020.118213

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313207