Evaluation of pumice for development of low-cost and energy-efficient composite phase change materials and lab-scale thermoregulation performances of its cementitious plasters
Ahmet Sarı,
Gökhan Hekimoğlu,
V.V. Tyagi and
R.K. Sharma
Energy, 2020, vol. 207, issue C
Abstract:
Integration of a building mass with a phase change-energy storage material is able to improve its thermal efficiency. With this respect, pumice was evaluated as low-cost supporting material for development of energy-efficient composites containing capric acid (CA) and polyethylene glycol(PEG) as phase change material (PCM). The developed leak-proof composites was also incorporated separately with ordinary cement (OC; Portland Cement) to produce novel plaster with thermal energy storage (TES) ability for thermoregulation of buildings. The DSC analysis results demonstrated that the shape-stabilized composite PCMs (S-SCPCMs) had melting temperatures of 31.03 °C and 8.80 °C and TES capacity of 116.27 J/g and 98.39 J/g, respectively. Cycling thermal degradation stability and TES dependability of the leak proof composites were examined by TGA techniques. The lab-scale test revealed that the indoor center temperatures (ICT) of the cubic chambers plastered separately by pumice/CA/OC and pumice/PEG/OC mortars were maintained at comfortable temperature range for relatively longer times compared to the control chamber plastered by OC mortar.
Keywords: Capric acid; PEG; Pumice; Cement; Plaster; Composite PCM; Thermal energy storage; Thermoregulation; Building (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220313499
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313499
DOI: 10.1016/j.energy.2020.118242
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().