An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation
Xing Shu,
Guang Li,
Jiangwei Shen,
Zhenzhen Lei,
Zheng Chen and
Yonggang Liu
Energy, 2020, vol. 207, issue C
Abstract:
Accurate estimation of inner status is vital for safe reliable operation of lithium-ion batteries. In this study, a temperature compensation-based adaptive algorithm is proposed to simultaneously estimate the multi-state of lithium-ion batteries including state of charge, state of health and state of power. In the proposed co-estimation algorithm, the state of health is identified by the open circuit voltage-based feature point method. On the basis of accurate capacity prediction, the state of charge is estimated by the adaptive extended Kalman filter with a forgetting factor considering temperature correction. The state of power is determined according to the multi constraints subject to state of charge, operating temperature and maximum current duration. The substantial experimental validations in terms of different current profiles, aging status and time-varying temperature operating conditions highlight that the proposed algorithm furnishes preferable estimation precision with certain robustness, compared with the traditional extended Kalman filter and the adaptive extended Kalman filter. Moreover, the battery pack validation is performed to further justify the feasibility of proposed algorithm when employed in a product battery management system.
Keywords: Adaptive extended kalman filter; State of charge; State of health; State of power; Temperature compensation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220313694
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313694
DOI: 10.1016/j.energy.2020.118262
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().