A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network
Wei Sun and
Chenchen Huang
Energy, 2020, vol. 207, issue C
Abstract:
Carbon trading is regarded as an important measure to reduce carbon emissions. To provide more accurate carbon prediction results for policymakers and market participants, a hybrid carbon price prediction model combines empirical mode decomposition, variational mode decomposition, and long short-term memory network is proposed. The empirical analysis was conducted based on the actual data of all eight carbon market pilots in China. According to the results of empirical analysis, several main conclusions can be summarized. First, the prediction accuracy and robustness of the proposed model are optimal in comparison experiments. In the Beijing carbon market, the MAPE, RMSE, and R2 of the proposed model improved by 63.98%, 66.07%, and 12.24%, respectively, compared with the worst model. Second, the secondary decomposition can effectively improve the prediction accuracy. In the Beijing dataset, the combination of empirical mode decomposition and variational mode decomposition improved the MAPE, RMSE, and R2 values of the model by an average of 35.52%, 46.57%, and 8.94%. Third, the carbon market in Hubei province is relatively mature, while the carbon market in Tianjin is relatively low in maturity. The study can make a theoretical and practical contribution to the literature within this realm.
Keywords: Carbon price prediction; Decomposition algorithm; Long short-term memory model; Deep learning; Carbon market (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220314018
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:207:y:2020:i:c:s0360544220314018
DOI: 10.1016/j.energy.2020.118294
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().