EconPapers    
Economics at your fingertips  
 

Experimental and numerical study of formation and development of disturbance waves in annular gas-liquid flow

Wenyuan Fan, Andrey V. Cherdantsev and Henryk Anglart

Energy, 2020, vol. 207, issue C

Abstract: Disturbance waves in a downwards annular gas-liquid flow were investigated experimentally and numerically in this study. In the experiment, the brightness-based laser-induced fluorescence (BBLIF) technique was utilized to obtain high-resolution spatiotemporal measurements for the film thickness. In the simulations, the two-phase system was simulated by the volume of fluid (VOF) method together with newly developed turbulence damping models, without which the turbulence level around the film surface is considerably under-predicted. Qualitative and quantitative comparisons were carried out for the experimental and numerical data, during which a novel method was developed to extract complex wave structures in a direct manner. Comparisons showed that the model is able to reproduce the main stages of flow evolution, including development of high-frequency initial waves, their coalesce into stable large-scale disturbance waves, generation of slow and fast ripples, and disruption of fast ripples into droplets. The main properties of modeled waves are in decent agreement with the measured ones, apart from noticeably rarer generation of ripples. The presented methods offer a new and promising option to model various energy technology systems, where annular two-phase flow occurs.

Keywords: Annular flow; Disturbance waves; BBLIF; VOF; Turbulence damping (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422031416X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:207:y:2020:i:c:s036054422031416x

DOI: 10.1016/j.energy.2020.118309

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:207:y:2020:i:c:s036054422031416x