Impact of post-torrefaction process on biochar formation from wood pellets and self-heating phenomena for production safety
Emmanuel Arriola,
Wei-Hsin Chen,
Yi-Kai Chih,
Mark Daniel De Luna and
Pau Loke Show
Energy, 2020, vol. 207, issue C
Abstract:
The advancement of torrefaction in the industry raises safety issues lately. This work aims to investigate the impact of post-torrefaction upon biochar formation and the self-heating phenomena of torrefied wood pellets. Three operating scenarios are taken into account. Specifically, dried wood pellets are first torrefied in nitrogen at various temperatures (200–300 °C) followed by immediate exposure to N2 or air with/without keeping temperature, namely, the post-torrefaction, to examine the self-heating behavior. Meanwhile, the influences of torrefaction temperature, duration, and self-heating on biochar’s characteristics are analyzed. It is found that self-heating with the highest temperature rise of 61 °C is triggered when the biochars are in an oxidative post-torrefaction process with keeping temperature. Alternatively, oxidative post-torrefaction without keeping temperature can efficiently intensify the pellets’ calorific value up to 42%. The X-ray photoelectron spectroscopy analysis reveals the depletion of the CO functional group. It is concluded that uncontrolled self-heating in large scale production will lead to combustion and make biochar unsafe. Alternatively, if heat accumulation inside the biochar piles can be prevented, the oxidative environment that causes self-heating can open a lot of research opportunities that can help in the advancement of torrefaction technologies for biomass as an alternative source of energy.
Keywords: Torrefaction and post-torrefaction; Biomass and bioenergy; Self-heating and heat accumulation; Biochar; Safety; X-ray photoelectron spectroscopy (XPS) (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220314316
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:207:y:2020:i:c:s0360544220314316
DOI: 10.1016/j.energy.2020.118324
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().