Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach
Francesco Calise,
Francesco Liberato Cappiello,
Dentice d’Accadia, Massimo and
Maria Vicidomini
Energy, 2020, vol. 208, issue C
Abstract:
This work presents a dynamic simulation model of a prototypal renewable plant producing electricity, heat and cool. The hybrid system consists of a 6 kWe Organic Rankine Cycle (ORC), a 17.1 kWf absorption chiller, a geothermal well, a 25 m2 evacuated solar collector field, a 200 kWt biomass heater and a 45.56 kWh electric energy lithium-ion storage system. The geothermal well at 96 °C, in combination with the solar field, supplies the thermal energy driving the ORC. This simulation model is implemented in TRNSYS environment. In order to evaluate the thermoeconomic performance of this renewable trigeneration plant, a suitable case study is analysed: a bar and soccer centre in the area of Campi Flegrei (Naples). By the simulation, interesting results in terms of energy and environmental performance are obtained. The proposed renewable power plant achieves a primary energy saving of 94.54% and a reduction of CO2 emissions equal to 97.36%. The high total capital cost of the plant significantly affects the payback period of 16.7 years. However, in the future European energy scenarios, where a full decarbonization will be achieved and the capital cost of the renewables will significantly decrease, the use of these technologies will be pivotal and significantly profitable.
Keywords: Organic rankine cycle; Geothermal energy; Ground heat exchanger; Polygeneration plant dynamic performance; Evacuated solar collectors; Lithium-ion battery (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422031402X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:208:y:2020:i:c:s036054422031402x
DOI: 10.1016/j.energy.2020.118295
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().