Data-driven approach for short-term power demand prediction of fuel cell hybrid vehicles
Tao Zeng,
Caizhi Zhang,
Dong Hao,
Dongpu Cao,
Jiawei Chen,
Jinrui Chen and
Jin Li
Energy, 2020, vol. 208, issue C
Abstract:
Due to slow internal mass transport, the fuel cell is a typical time-delay control object in vehicular hybrid powertrain. To yield better control effect, the predictive control is considered as an effective solution, in which the short-term power demand of vehicle is a key input variable and must be predicted accurately. However, a time-phase mismatch phenomenon usually occurs in prediction results when using non-iterative direct prediction method, resulting in poor prediction accuracy. This study systematically explains the mechanism of the studied time-phase mismatch and proposes a novel iterative learning framework (ILF) to reduce it. Several machine learning algorithms are compared to select a proper learning core for ILF. The results show that prediction RMSE reduces up to 76.8% and 65.0% for the power and power change rate predictions, respectively, comparing with non-iterative prediction manner. The least-squares support vector machine as the learning core of ILF achieves the best performance within the shortest runtime. Moreover, the proposed ILF predictor has a good adaptability to various driving conditions through more validations. The proposed ILF has better predictable ability for the future data comparing with classical recurrent time-series prediction method. The proposed ILF is expected to improve the accuracy of vehicle load-status perception.
Keywords: Fuel cell hybrid vehicles; Short-term power demand; Time-series prediction; Machine learning; Data-driven approach (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220314262
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:208:y:2020:i:c:s0360544220314262
DOI: 10.1016/j.energy.2020.118319
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().