Experimental evaluation of novel photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, triangular and rectangular
Amin Shahsavar,
Mehdi Eisapour and
Pouyan Talebizadehsardari
Energy, 2020, vol. 208, issue C
Abstract:
In this study, an experimental assessment is presented on the effects of employing serpentine tubes with three different cross-sections of circular, triangular, and rectangular, on the characteristics of a photovoltaic/thermal (PV/T) unit in terms of energy and exergy efficiencies compared with a conventional PV system. The influences of adding magnetite nanoparticle to the base-fluid and employing a higher mass flow rate of the cooling fluid are examined. The results demonstrated that by comparing PV and PV/T units with a circular serpentine tube, the electrical efficiency improves by almost 12% due to adding coolant tube in addition of getting 22.6W extra thermal energy power. Furthermore, by changing the cooling tube configuration from conventional circular form to rectangular, electrical efficiency eases by 2% to reducing PV module temperature. Moreover, it was found that by adding nanoparticle to pure water to employ nanofluid as coolant fluid, overall energy and exergy efficiencies enhance by 6.6% and 0.7%, respectively, using nanoparticles with a volume concentration of 2% for the case of the rectangular serpentine tube for the flow rate of 20 kg/h. Furthermore, enhancing the mass flow rate has a positive trend on the PV/T performance in terms of both energy and exergy efficiencies.
Keywords: Photovoltaic-thermal module; Serpentine cooling tubes; Magnetite nanoparticle; Nanofluid; Mass flow rate; Energy and exergy analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220315164
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:208:y:2020:i:c:s0360544220315164
DOI: 10.1016/j.energy.2020.118409
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().