A comprehensive assessment of low-temperature preheating process in natural gas pressure reduction stations to better benefit from solar energy
Mohammad Olfati,
Mehdi Bahiraei,
Saeed Nazari and
Farzad Veysi
Energy, 2020, vol. 209, issue C
Abstract:
In this study, a thermodynamic model is developed for a natural gas pressure reduction station, which uses solar energy as an auxiliary energy source for preheating the natural gas. To increase the duration of solar energy usage per day and the consequent decrease in the fuel consumption of the heater, a novel design is presented in which preheating the gas to lower temperatures becomes possible through the use of multi-stage preheating and pressure reduction. Through this novel design, it becomes possible to utilize a single heater to preheat all stages, which reduces the costs dramatically. To investigate the effectiveness of the proposed design in different climate conditions, a comprehensive economic analysis is conducted based on fuel saving and carbon dioxide emission reduction. The results show that the return of capital is within 1–10 years considering different parameters, including: 1- daily time duration of solar energy usage by the station before implementation of the new design, 2- additional daily time duration of solar energy usage after implementation of the new design, and 3- number of preheating and pressure reduction stages. Finally, the effects of different parameters on the return of capital are discussed.
Keywords: Natural gas; Pressure reduction station; Indirect water bath heater; Low-temperature heating; Economic analysis; Environmental analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220315383
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315383
DOI: 10.1016/j.energy.2020.118430
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().