Cross sectional geometries effect on the energy efficiency of a photovoltaic thermal module: Numerical simulation and experimental validation
Wei Pang,
Yongzhe Zhang,
Benjamin C. Duck,
Hongwen Yu,
Xuemei Song and
Hui Yan
Energy, 2020, vol. 209, issue C
Abstract:
The operating temperature influences both the electrical efficiency and thermal efficiency of a photovoltaic thermal (PVT) module. In this paper, a simplified thermal transfer model is used to search for the optimal structure of a high efficiency PVT module. For an aluminum collector with a given thickness, the optimal ratio between size and spacing and cross sectional geometry of the flow channels has been found with numerical simulations using computational fluid dynamics (CFD). The temperature distribution of the PVT module constructed with an aluminum collector is found to be more uniform than the conventional sheet-tube PVT module, due to using an improved thermal transfer mode based on the surface contact. To evaluate the impact of cross sectional geometry, the operating temperatures, electrical and thermal efficiencies of two PVT modules designed with rectangle and arch geometries are examined under outdoor conditions. Measured experimental intercept values of instantaneous thermal efficiencies are close to simulation results, demonstrating the utility of the approach as a reference for a new generation of PVT modules in future.
Keywords: PVT module; Cross sectional geometry; Ratio of size and spacing; Operating temperature; Efficiency (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220315474
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315474
DOI: 10.1016/j.energy.2020.118439
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().