An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China
Wuyong Qian and
Jue Wang
Energy, 2020, vol. 209, issue C
Abstract:
With rapid development of wind power in China, it has become an integral part of the energy structure, so it is of practical significance to forecast wind power generation accurately. As wind power generation in China experiences both an exponential increase trend and a seasonal fluctuation pattern, it cannot be accurately forecasted by traditional models. As the grey model GM(1,1) can capture an exponential growth trend and the Hodrick-Prescott filter is known for its capability of characterizing seasonality factors, this paper proposes a novel seasonal forecasting method that integrates the HP filter into the grey model GM(1,1). The proposed model is then applied to carry out an empirical analysis based on the seasonal wind power generation data between 2013 and 2019 in China. The forecasting results from the new model are then compared with three existing approaches. The comparison results indicate that the proposed model generally outperforms existing methods as it can well capture seasonal fluctuations in the data series. A further prediction of wind power generation in China is conducted into a future horizon of 2020 and 2021 by using our model, followed by a set of policy recommendations for further development of the wind power industry in China.
Keywords: Wind power generation prediction; Seasonal fluctuations; GM(1,1) model; HP filter (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220316078
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:209:y:2020:i:c:s0360544220316078
DOI: 10.1016/j.energy.2020.118499
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().