EconPapers    
Economics at your fingertips  
 

Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 2: Torrefaction model

María González Martínez, Capucine Dupont, Andrés Anca-Couce, Denilson da Silva Perez, Guillaume Boissonnet, Sébastien Thiéry, Xuân-mi Meyer and Christophe Gourdon

Energy, 2020, vol. 210, issue C

Abstract: A new torrefaction model was proposed for predicting solid mass loss in torrefaction as a function of biomass main macromolecular composition and type, as well as on the operating conditions. To do this, solid degradation kinetics were modelled following a 2-successive reaction scheme for each macro-compound and the additive modelling approach through biomass macromolecular component behavior in torrefaction proposed by Nocquet et al. (2014). The use of extracted fractions from different woody and agricultural biomass species (ash-wood, beech, miscanthus, pine and wheat straw) instead of commercial compounds increased the accuracy of the prediction of solid kinetics in biomass torrefaction. The validation of the proposed model with 9 raw biomasses in torrefaction showed an accurate prediction for woods, while the prediction for agricultural biomasses was acceptable.

Keywords: Biomass; Torrefaction; Solid kinetics; Polysaccharides; Lignin (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220315590
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:210:y:2020:i:c:s0360544220315590

DOI: 10.1016/j.energy.2020.118451

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220315590