EconPapers    
Economics at your fingertips  
 

Smart Distributed Energy Storage Controller (smartDESC)

F. Malandra, A.C. Kizilkale, F. Sirois, B. Sansò, M.F. Anjos, M. Bernier, M. Gendreau and R.P. Malhamé

Energy, 2020, vol. 210, issue C

Abstract: While the storage properties and the anticipation potential of many classes of power system loads (such as thermal loads) can be exploited to mitigate renewable sources variability, the challenge to do so in an optimal and coherent manner is significant. This is due to the sheer number and dynamic diversity of the loads that can be involved in any large-scale application. The smartDESC concept is a control architecture that was developed for this purpose. It builds on the more pervasive communication means currently available (such as Advanced Metering Infrastructures), as well as the mathematical tools of (i) aggregate load modeling, (ii) renewable energy forecasting, (iii) optimization theory, deterministic or stochastic, and (iv) some recent developments in control of large-scale systems based on game theory, and so-called mean-field (MF) control theory, which allow a scalable yet optimal approach to the decentralized control of large pools of loads. This paper presents the building blocks of the smartDESC architecture, together with an associated simulator and simulation results.

Keywords: Mean-field; Distributed control; Energy storage; Smart grid; Electric water heater; Advanced metering infrastructure (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422031608X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:210:y:2020:i:c:s036054422031608x

DOI: 10.1016/j.energy.2020.118500

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:210:y:2020:i:c:s036054422031608x