A fast water level optimal control method based on two stage analysis for long term power generation scheduling of hydropower station
Zhongzheng He,
Jianzhong Zhou,
Hui Qin,
Benjun Jia,
Feifei He,
Guangbiao Liu and
Kuaile Feng
Energy, 2020, vol. 210, issue C
Abstract:
water level optimal control (WLOC) has been one of the most important issues in reservoir optimal operation. To deeply understand WLOC in reservoir optimal operation, two stage analysis (TSA) of long term power generation scheduling of hydropower station (LSHS) is carried out, and the optimality condition for two stage problem of LSHS is derived with the assumption that there is no deserted outflow. Based on the idea of divide-and-conquer, a multistage problem is divided into several subproblems composed of two-stage problems. The fast water level optimal control (FWLOC) method based on TSA is proposed according to the foregoing idea. And improved FWLOC-TSA extend FWLOC-TSA with the correction strategy for deserted outflow. Then, taking Xiluodu and Three Gorges Reservoir as examples, the proposed methods are applied to solve the problem of LSHS to test their effectiveness and efficiency. Meanwhile, the dynamic programming (DP) that can obtain the optimal solution of LSHS is used for comparison in the experiments. The experimental results demonstrate that the improved FWLOC-TSA works the same as DP. Especially the mean calculation time of improved FWLOC-TSA is about 1 ms, which has a remarkable performance compared with the calculation time of DP.
Keywords: Fast water level optimal control (FWLOC); Two stage analysis (TSA); Hydropower station; Long term power generation scheduling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422031639X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:210:y:2020:i:c:s036054422031639x
DOI: 10.1016/j.energy.2020.118531
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().