EconPapers    
Economics at your fingertips  
 

Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system

Amir Reza Razmi, Ahmad Arabkoohsar and Hossein Nami

Energy, 2020, vol. 210, issue C

Abstract: In the present article, thermodynamic, exergoeconomic, economic, and sustainability investigations of a recently developed environmentally friendly hybrid absorption/recompression refrigeration cycle is proposed to evaluate its feasibility for decision making and marketing. The proposed system is a novel hybridization of the conventional vapor compression and absorption cycles, wherein a booster compressor has been used between the generator and condenser of the single-effect absorption cycle to improve its performance. Also, two separate multi-objective optimization models are developed using a combination of the nondominated-storing-genetic algorithm (NSGA-II) and artificial neural network (ANN) to address the optimum performance values concerning the objective functions. The obtained results approve that the proposed cycle is a promising concept from both thermodynamic and economic viewpoints. The results indicate that the system presents a coefficient of performance and exergy efficiency of 4.88 and 37.43% under the optimum working conditions. The overall rate of exergy destruction of the system is 20.23 kW, and a sustainability index of around 1.53 can be achieved at a cooling capacity of 150 kW. The economic results indicate that the reference system has a payback period of 4.17 years, which is reduced to less than 4 years after doing the optimizations.

Keywords: Thermodynamic and thermoeconomic analysis; Absorption/recompression refrigeration cycle; Sustainability index; Artificial neural network; Multi-objective optimization; ANN; NSGA-II (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220316674
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:210:y:2020:i:c:s0360544220316674

DOI: 10.1016/j.energy.2020.118559

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220316674