Enhancing hydrogen-rich syngas production and energy recovery efficiency by integrating hydrothermal carbonization pretreatment with steam gasification
Nana Peng,
Chao Gai and
Chao Peng
Energy, 2020, vol. 210, issue C
Abstract:
Steam gasification behavior and kinetics of hydrothermally treated low-lipid microalgae Nannochloropsis sp. were probed in this work. The roles of hydrothermal carbonization (HTC) parameters (HTC temperature, HTC reaction time) as well as gasification conditions (gasification temperature, S/B mass ratio) in modulating the properties of hydrothermal carbons (HCs) as well as gasification performance were elucidated. Experimental results indicated that the aromaticity of the HCs derived from Nannochloropsis sp. was promoted, whereas the polarity was lowered by the increased HTC temperature and reaction time. At optimum HTC conditions (HTC temperature of 180 °C, residence time of 12 h) and gasification conditions (gasification temperature of 900 °C, S/B mass ratio of 2), the total maximum energy recovery efficiency was as high as 1.59. Kinetic parameters for the major gaseous products during the steam gasification of raw microalgae and the two typical HCs (HC–180C-12 h and HC-220C-12 h) were further determined. Kinetic results verified that the gasification reactivity of HC-180C-12 h was greatly higher than other two feedstock, and H2 formation was greatly promoted compared to the other two gaseous products. Overall, combining hydrothermal pretreatment and steam gasification in one step is a promising technology that could greatly promote hydrogen-rich syngas production and energy recovery efficiency from low-lipid microalgae.
Keywords: Biomass; Gasification; Hydrothermal carbonization; Kinetic analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220317631
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:210:y:2020:i:c:s0360544220317631
DOI: 10.1016/j.energy.2020.118655
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().