EconPapers    
Economics at your fingertips  
 

Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt

Tobias Junne, Niklas Wulff, Christian Breyer and Tobias Naegler

Energy, 2020, vol. 211, issue C

Abstract: The requirements for neodymium, dysprosium, lithium, and cobalt in power generation, storage and transport technologies until 2050 under six global energy scenarios are assessed. We consider plausible developments in the subtechnology markets for lithium-ion batteries, wind power, and electric motors for road transport. Moreover, we include the uncertainties regarding the specific material content of these subtechnologies and the reserve and resource estimates. Furthermore, the development of the material demand in non-energy sectors is considered. The results show that the material requirements increase with the degree of ambition of the scenarios. The maximum annual primary material demand of the scenarios exceeds current extraction volumes by a factor of 3 to 9 (Nd), 7 to 35 (Dy), 12 to 143 (Li), and 2 to 22 (Co). The ratios of cumulative primary material demand to average reserve estimates range from 0.1 to 0.3 (Nd), 0.3 to 1.1 (Dy), 0.7 to 6.5 (Li), and 0.8 to 5.5 (Co). Average resource estimates of Li and Co are exceeded by up to a factor of 2.1 and 1.7, respectively. We recommend that future scenario studies on the energy system transformation consider the influence of possible material bottlenecks on technology prices and substitution technology options.

Keywords: Critical materials; Energy scenarios; Climate change mitigation; Energy system modelling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220316406
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:211:y:2020:i:c:s0360544220316406

DOI: 10.1016/j.energy.2020.118532

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220316406