EconPapers    
Economics at your fingertips  
 

Downhole electric heater with high heating efficiency for oil shale exploitation based on a double-shell structure

Zhendong Wang, Xiaoshu Lü, Qiang Li, Youhong Sun, Yuan Wang, Sunhua Deng and Wei Guo

Energy, 2020, vol. 211, issue C

Abstract: To improve the heating efficiency of the downhole electric heaters used in oil shale exploitation, double-shell downhole electric heaters with continuous helical baffles (DS-DEHs) were developed in this study. These heaters reduce heat loss generated by the shell of single-shell downhole electric heaters with continuous helical baffles (SS-DEHs) and reuse the heat loss by driving air flows through outer and inner shell-passes in sequence. Two types of DS-DEHs with three different helical pitches were experimentally studied, and SS-DEHs were set as the control. The results indicated that the effect of mass flow rate on the heating rate is greater than that of heating power. Forced convection is the major heat transfer mode in heater shell-side, and the contribution of shell-side radiant heat transfer mainly depends on the helical pitch, then on the heating power and mass flow rate. Additionally, the heat loss generated by heater shell is mainly dissipated in the form of radiation. The total heat loss of the DS-DEH is 87.16%–96.41% lower than that of the SS-DEH, and its heating efficiency is 1.06–1.17 times than that of SS-DEH, indicating that the double-shell structure can effectively improve the heating efficiency of downhole electric heaters.

Keywords: In situ pyrolysis; Downhole electric heater; Double-shell structure; Outlet temperature response; Heating efficiency (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220316479
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:211:y:2020:i:c:s0360544220316479

DOI: 10.1016/j.energy.2020.118539

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220316479