A data-based approach for benchmark interval determination with varying operating conditions in the coal-fired power unit
Jing Xu,
Dapeng Bi,
Suxia Ma and
Jin Bai
Energy, 2020, vol. 211, issue C
Abstract:
The modern coal-fired power units in China are mostly operated in a flexible manner. However, flexible operation results in performance degradation, energy-efficiency penalties, and increased energy consumption, which necessitates the detection of performance degradation to save energy. This paper presents a model for detecting the performance degradation of coal-fired power units by determining the benchmark intervals of variables under varying operating conditions using data-mining methods. The K-means clustering method is employed to categorize the operating conditions according to the similarity of historical operational data. Gaussian mixture model is adopted to determine the benchmark interval with respect to the varying operating conditions by estimating the probability of historical runtime data. The methodology is validated using a feedwater heating system of an on-duty coal-fired power unit. The results indicate that in comparison with the design-based method, the proposed method can provide benchmark intervals for 225 operating conditions. In addition, the determined benchmark interval can detect performance degradation earlier than design-based values, thereby providing opportunities for energy-efficiency enhancement.
Keywords: Coal-fired power plant; Performance degradation; Benchmark; K-means; Gaussian mixture model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220316637
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:211:y:2020:i:c:s0360544220316637
DOI: 10.1016/j.energy.2020.118555
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().