EconPapers    
Economics at your fingertips  
 

Geometry definition and performance assessment of Tesla turbines for ORC

Lorenzo Talluri, Olivier Dumont, Giampaolo Manfrida, Vincent Lemort and Daniele Fiaschi

Energy, 2020, vol. 211, issue C

Abstract: The Tesla turbine - also known as friction, viscous or bladeless turbine - is a peculiar expander, which generates power through viscous entrainment. In the last years, it has gained a renewed appeal due to the rising of distributed power generation applications. Indeed, this expander is not suitable to large size power generation, but it could become a breakthrough technology in the low power ranges, due to its characteristics of low cost and reliability. The current study presents a design approach to the Tesla turbine, applied to organic working fluids (R1233zd(E), R245fa, R1234yf, n-Hexane). Three fundamental geometric parameters are identified (rotor channel width/inlet diameter ratio, rotor outlet/inlet diameter ratio, throat width ratio) and their effects on the performance are analysed. The geometry of the turbine has been defined and the assessment of the performance potential is run, applying a 2D code for the viscous flow solution, considering real compressible fluid properties. For all the investigated working fluids, an efficiency higher than 60% has been achieved, with the defined geometry, under suitable thermo fluid-dynamic conditions.

Keywords: Tesla turbine; Fluid dynamics; ORC; Geometric definition (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220316789
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:211:y:2020:i:c:s0360544220316789

DOI: 10.1016/j.energy.2020.118570

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220316789