Investigation on cyclic variation of diesel spray and a reconsideration of penetration model
Yifan Zhou,
Wenyuan Qi and
Yuyin Zhang
Energy, 2020, vol. 211, issue C
Abstract:
Spray tip penetration is one of the important characteristics for optimizing an engine combustion system. The conventional penetration models proposed so far have not considered cyclic variations of spray. The spray cyclic variation, however, is an inherent feature of a spray injected into turbulent ambient gas at a high speed. In this work, in order to study the effects of cyclic variations in spray structure on spray tip penetration, the liquid phase distributions of diesel sprays were measured 36 times (cycles) for each condition of injection pressure and ambient density at a constant volume chamber with wide optical windows. The experimental results were analyzed through such statistical methods as Probability Presence Image (PPI) and Intersection over Union (IoU). It was found that the spray cyclic variation gradually increased with time after start of injection and became obviously large at the late stage. This cyclic variation in spray structure might cause variation up to ±9% in spray tip penetration. A spray tip penetration model was developed by introducing a factor to consider the effect of spray cyclic variation. The factor of cyclic variation (f) and the presence probability (PP) could be correlated through experiments and expressed by a cubic polynomial function.
Keywords: Spray tip penetration; Cyclic variation; Spray modeling; Presence probability image; Intersection over union (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220317138
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317138
DOI: 10.1016/j.energy.2020.118605
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().