Energy and exergy analyses of S–CO2 coal-fired power plant with reheating processes
Zhewen Chen,
Yanjuan Wang and
Xiaosong Zhang
Energy, 2020, vol. 211, issue C
Abstract:
S–CO2 (Supercritical-CO2) coal-fired power plant is a promising technology for efficient and clean utilization of coal for power generation. The conversion and transfer of the energy and exergy in the power plants with double-reheat and single-reheat processes are studied. With the main gas parameters of 32 MPa/893.15 K, the power generation efficiencies of the S–CO2 coal-fired power plant with double-reheat and single-reheat processes are 49.06% and 48.72%, respectively. The corresponding exergy efficiencies are 48.02% and 47.69%, respectively. The origins of exergy destructions in different units are studied using the Energy Utilization Diagram (EUD) method. The exergy distributions of the power plants are presented. For the power plant with double-reheat process, the work output, the exergy exhaust into the atmosphere, the exergy destruction in combustion process, the exergy destruction in heat transfer processes, the exergy destruction caused by pressure loss, and the exergy destructions in turbo systems account for 48.02%, 9.66%, 20.45%, 17.56%, 1.08%, and 3.23% of the total exergy input of the power plant, respectively.
Keywords: S–CO2 brayton cycle; Reheat process; Exergy analysis; Coal-fired power plant (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422031759X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:211:y:2020:i:c:s036054422031759x
DOI: 10.1016/j.energy.2020.118651
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().