EconPapers    
Economics at your fingertips  
 

Synergistic use of carbon dioxide in catalytic pyrolysis of chlorella vulgaris over Ni and Co catalysts

Sungyup Jung, Jung-Hun Kim, Young Jae Jeon, Young-Kwon Park and Eilhann E. Kwon

Energy, 2020, vol. 211, issue C

Abstract: Recovering energy from microalgal biomass via pyrolysis offers an active precautious measure for global warming due to its superior carbon fixation capability. Hence, catalytic pyrolysis of chlorella vulgaris (C. vulgaris) over Co and Ni catalysts was done to recover energy as a form of syngas. To offer a more sustainable measure for syngas formation, possible use of CO2 as a reaction feedstock was examined. As such, functional effectiveness of CO2 on C. vulgaris pyrolysis was mainly scrutinized. From non-catalytic pyrolysis of C. vulgaris, CO2 turned into CO by its reduction and simultaneous oxidation of volatile pyrolysates produced from C. vulgaris pyrolysis. Such the effectiveness of CO2 also resulted in the more gaseous pyrogenic products (syngas and C1-2 hydrocarbons), but its effectiveness was restrictively initiated at ≥ 510 °C due to retarded reaction kinetics. To accelerate the reaction kinetics governing the formation of gaseous pyrogenic products, earth abundant and non-toxic metal Co and Ni catalysts were adopted for catalytic pyrolysis. The significant improvement of syngas production was achieved from Ni (5.6 times) and Co (2.6 times) catalysts, respectively, in reference to non-catalytic pyrolysis under the CO2 environment.

Keywords: Microalgae; Waste valorization; Carbon dioxide; Catalytic pyrolysis; Biochar fabrication; Syngas (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220318181
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:211:y:2020:i:c:s0360544220318181

DOI: 10.1016/j.energy.2020.118710

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220318181