EconPapers    
Economics at your fingertips  
 

Making the case for cascaded organic Rankine cycles for waste-heat recovery

Martin T. White, Matthew G. Read and Abdulnaser I. Sayma

Energy, 2020, vol. 211, issue C

Abstract: The design of single-stage organic Rankine cycle (ORC) systems can be challenging owing to large volumetric expansion ratios and sub-atmospheric condensation pressures. Cascaded systems could lead to more efficient expansion processes, higher condensation pressures, whilst introducing the possibility of two-phase expansion to enhance performance. The aim of this paper is to compare single-stage ORC systems to a novel two-phase cascaded system that combines a two-phase expansion topping cycle and a single-phase bottoming cycle for waste-heat recovery applications. Thermodynamic cycle models are integrated with variable efficiency expander models and discretised heat-exchanger sizing models, and single- and multi-objective optimisation studies are completed for three heat-source temperatures (473, 523 and 573 K). The results indicate the relative performance improvement of cascaded systems increases as the heat-source temperature and relative heat-sink size increase, and could increase power output and first-law thermal efficiency by up to 11.1% and 9.5% respectively. The multi-objective optimisation reveals that for a fixed total heat-transfer area the cascaded systems produce approximately 3.6% and 10.5% more power than the single-stage systems for the 523 and 573 K cases respectively with a heat-sink mass-flow rate of 1 kg/s. This increases to 11.7% and 14.5% for heat-sink mass-flow rate of 4 kg/s.

Keywords: Organic rankine cycle; ORC; Cascaded; Waste-heat recovery; Optimisation; Expander modelling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220320193
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:211:y:2020:i:c:s0360544220320193

DOI: 10.1016/j.energy.2020.118912

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220320193