EconPapers    
Economics at your fingertips  
 

Water as an adsorptive for adsorption cycles operating at a temperature below 0 °C

I.S. Girnik and Yu.I. Aristov

Energy, 2020, vol. 211, issue C

Abstract: From the thermodynamic point of view, water is the best working fluid for adsorptive heat conversion (AHC) cycles. Here we propose to use an aqueous salt solution instead of pure water for preventing its freezing in the evaporator/condenser at a temperature below 0 °C. The thermodynamic aspects of this approach are comprehensively investigated. The comparison with methanol and ammonia is made when possible. The effect of salt solution on the cycle boundary pressures and useful heat is studied for common (cooling and heat storage) and innovative (“Heat from Cold”, HeCol) AHC cycles. The experimental study on water sorption dynamics under the reduced vapour pressure over eutectic solutions of NaCl and CaCl2 shows a significant slowing of desorption (for the HeCol cycle) and adsorption (for the heat storage cycle) at long times. However, the specific power at a 70% conversion (0.3–0.6 kW/g) still remains promising for practical applications.

Keywords: Adsorptive heat transformation; Adsorption dynamics; Ambient below 0 °C; Water vapour; Eutectic aqueous solution (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220321447
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:211:y:2020:i:c:s0360544220321447

DOI: 10.1016/j.energy.2020.119037

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220321447