Globally optimal working fluid mixture composition for geothermal power cycles
Wolfgang R. Huster,
Artur M. Schweidtmann and
Alexander Mitsos
Energy, 2020, vol. 212, issue C
Abstract:
Numerical optimization is very useful for design and operation of energy processes. As the design has a major impact on the economics of the system, it is desirable to find a global optimum in the presence of local optima. So far, deterministic global optimization with detailed thermodynamic models incorporated has been limited to single fluid energy systems. We extend our previously presented approach [Schweidtmann et int Mitsos, COMPUT CHEM ENG (2019)] from single-species working fluids to binary mixtures with variable composition. First, we create accurate thermodynamic data for two selected binary mixtures using a thermodynamic library. Using this data, we train artificial neural networks, select them based on desired accuracy, and include them in the process model. The resulting hybrid model is then optimized with the open-source solver MAiNGO. We perform thermodynamic optimizations of geothermal power plants, considering both organic Rankine and Kalina cycle. For each cycle, we identify the globally optimal design, operation, and working fluid composition for the selected binary fluid mixtures within tractable CPU times. We show how a second mixture component enables improved ORC performance.
Keywords: Deterministic global optimization; Reduced-space; Artificial neural networks; Hybrid modeling; Process design; Organic Rankine cycle; Kalina cycle (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220318387
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:212:y:2020:i:c:s0360544220318387
DOI: 10.1016/j.energy.2020.118731
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().