URANS simulations of a horizontal axis wind turbine under stall condition using Reynolds stress turbulence models
Mojtaba Maali Amiri,
Milad Shadman and
Segen F. Estefen
Energy, 2020, vol. 213, issue C
Abstract:
Over the last decade, a dramatic increase in the size of commercial wind turbines is noticeable. The optimal structural design and reliable fatigue-life prediction of these large-scale structures depend on the accurate modeling of the turbulent flow around the rotors. The present paper aims at extending the knowledge of the turbulent flow characteristics around horizontal axis wind turbines and assessing the performance of several URANS turbulence models, principally Reynolds stress turbulence (RST) models, in predicting the wind turbine aerodynamics under stall condition. The simulations are performed using the NREL phase VI wind turbine over a wide range of wind speeds. Three RST models and the linear and quadratic variants of the k−ω SST turbulence model are examined. The results demonstrate that the RST models generally provide more reliable predictions. An evaluation of the Boussinesq hypothesis questions the applicability of the turbulence models employing this hypothesis to the wind turbine aerodynamic problems. Finally, the elliptic blending RST model, which is one of the latest formulations of the RST models, appears to provide the best trade-off between accuracy and computational cost.
Keywords: Wind turbine aerodynamics; URANS equations; Reynolds stress turbulence models; Modeling accuracy; NREL phase VI (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220318739
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:213:y:2020:i:c:s0360544220318739
DOI: 10.1016/j.energy.2020.118766
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().